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A refined solution of the Woinowsky-Krieger problem [l, 2) of the deformation of a transversally 

isotropic wedge-shaped plate is constructed taking the shear strain into account. A Mellin trans- 

formation is used. 

Since the plate is transversally isotropic and has a free edge [3, 41, it is necessary to apply 
refined theories to the Woinowsky-Krieger problem (taking the shear strain into account). The 
cutting forces must then be found more accurately because they can exceed the corresponding 
forces in the Kirchhoff-Love theory by as much as an order of magnitude in the presence of a 
free edge. 

We shall use the equilibrium equations in terms of the stress components of the three- 
dimensional problem of the theory of elasticity in orthogonal curvilinear coordinates. By 
integrating across the shell (with the shear and normal stresses r13, 223, Q, and oI1, o, being 
constant), we obtain the equilibrium equations (the zero approximation, Vekua’s moment-free 
case [5]) 

(a and p are the orthogonal curvilinear coordinates chosen on the median surface of the shell, 
Ni, N,O and Sfo = $I = So are the normal and shear forces arising in the shell, Qf, Ql are the 
cutting forces, F,, F,, Fare the projections of load intensity onto the a, 8, t directions, kI and 
k, are the curvatures of the coordinate lines a and 8, and A, B are the coefficients of the first 
quadratic form of the median surface of the shell). 

The presence of cutting forces in the equilibrium equations (1) indicates that the transverse 
shear is taken into account in these equations (6-81. The application of Eqs (1) develops and 
generalizes Timoshenko’s shear model [9]. 

The study of the transverse shear in shells in the case under consideration has been 
distinguished as an independent problem governed by a system of differential equations of 
lower order than in the original problem. 

The analysis of the stress-strain states of anisotropic shells reveals [lo, 111 that the strain due 
to the transverse shear predominates over those due to the normal stresses and compression. 

From physical considerations, we have 
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(ejS and E$ are the strain components of the transverse shear determined from Timoshe~o’s 
theory [9] and from the zero approximation, respectively). 

We set the physical condition 

Uj=U;+i$* w=w*+wo (3) 

(U,, U,, w are the projections of the displacement vector of points on the median surface in 
the directions a, l3, z, U: , Uy, w* are the projections of the displacement vector of points on 
the median surface determined from the classical theory (using Kirchhoff’s hypothesis), and 
Up, Ui, w” are the projections of the displacement vector of points on the median surface 
determined by the method under consideration). 

The expressions for the strain components ej, and E$, taking (2) and (3) into account, lead 
to the relation 

71 = -A-%*/au + k, U; (1-+2,A+B) (4) 

(‘yl and yz are the angles of rotation of the normal to the median surface). 
Conditions (4) and, consequently, (2) are consistent with the lotion of equivalence [12]. It 

follows that by considering the problem separately by the method in question and the classical 
theory one can determine the solution of the original problem. Five equilibrium equations are 
used to construct the complete stress-strain state of the shell. To state the boundary conditions 
one must compute the work done by the forces acting along the contour of the shell given the 
appropriate displacements. 

Setting 4 = /c2 = 0 in (l), we obtain the equably equations for plates ~rre~onding to the 
method under consideration. The first two equations define the generalized plane strain state 
of the plate. The third equilibrium equation 

defines the transverse shear [6-83 (X and y are the Cartesian coordinates of points in the 
median plane of the plate). 

The substitution of the expressions for the cutting forces into (5) leads to the equation 

A@ = -Fj’X’kh (61 

for the bending of transversally-isotropic plates (A is the Laplace operator G’ is the shear 
modulus in the normal plane, and k is the shear coefficient, defined by the law governing the 
variation of shear stresses across the plate thickness [12]). We remark that Eq. (6) can also be 
obtained from the principle of virtual displacement. The equation Awe = 0 is used in what 
follows. 

We consider a wedge-shad plate (see Fig. 1) and assume that the edge 8 = 0 is fixed, while 
the edge 8 = a, is free, except for the point r = r,, where a concentrated force P is appiied. 

The solution of this problem is known in the classical setting [l, 21. We will construct a 
solution in which the transverse shear is taken into account. The function f(r) can be repre- 
sented using Mellin’s formula as follows: 

(7) 

(S is a parameter and CT is a real constant that satisfies certain restricting conditions). 
In particular, for the force P concentrated at r = r, we get 
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Fig. 1. 

For the deflection W” we find from the equation AW” = 0 that 

wo = P-2(C(S)COS((S + 2)0) + 
D(s)sin((s + 2)8)) 

(C(S) and D(S) are the functions to be found). 
Using the boundary conditions w” IL= 0 and 8 = 0, where L is the rectilinear fixed edge (see 

Fig. l), we get C(S) = 0. 
From the boundary conditions at the free edge of the plate we have (Qp),, = f(r). (Formula 

(8) can be used to determine f(r); Qf is the tangential shear force.) Then 

D(s) = 
Prgs+2 

2hG’(s+2)cos((s+2)a,)k 

After some reduction we get [13] 

WC).= P 
4hG’nk 

9 

(9) 

for the desired deflection. 
For r = r, and 8 = 01 (the free edge) we have a logarithmic singularity for the deflection w” of 

the plate. w” -+ 0 as G’ + -(the classical case). 
The physical equation for the cutting forces leads to the expression 

Q;d- 
chgcos?j 

2m, ch2 E, - sin2 7 
(10) 

The total deflection can be determined from (3). Compared with the classical argument, it is a 
more rational choice to use (10) to construct the diagrams of the shear forces. It can also lead 
to much more accurate results [3,4]. In this case the natural boundary conditions are satisfied 
at the plate edge. 

The results of computing the deflections for v equal to zero and a, =x/4 are presented in 
Table 1 (v is Poisson’s ratio and E is Young’s modulus). In particular, it follows from Table 1 
that w/w* is equal to 2.1759 for 2hlro = 0.4, E/G’= 8, and r/r0 = 0.9. 
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Table 1 

2% r/r0 z’ = EN;’ (w!R~D) KY3 d/w. 
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0.4 
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0.3 
0.4 
05 
0.6 
0.7 
0.8 
0.9 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.1 
02 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.0031832 
0.012739 
0.028726 
0,051371 

2 0.081300 
0.11997 
0:17063 
0.24133 
055875 
0.15597 
0.62422 
1.4076 
2.5172 
3.9837 
5.8783 
8.3610 
11.825 
17,579 

8 0.012733 
0.050957 
0.1149 
020549 
0.32520 
0.47987 
0,68253 
0.,%534 
1.4350 
0.31832 

8 1.2739 
2.8726 
5.1371 
8.4300 
11.997 
17.063 
24,133 
35.875 
0.45837 
1.8344 
4.1365 
7.3974 
11,707 
17,275 
24.57 1 
34.752 
51,659 
0.62390 
2,4%9 
6.6302 
10.069 
15.935 
23.513 
33,444 
47,301 
70.3 14 
0.81489 
3,2612 
7.3537 
13.151 
20.8 1 
30.711 

8 43.682 
61.781 
91.839 

0.16904 
022507 

0.34498 
0.45932 

0.$%78 
0.66141 

0.67617 
0.90026 

0.88316 
1.1759 
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The ratio w/w* is equal to 1.88316 if 2hlr,=0.4, E/G’= 8, and r/r0 =0.8. The results 
indicate that the transverse shear has a significant effect on the deflection of the plate. Because 
of this it is necessary to refine the problem under consideration. We observe that wow* - E/G’ 
and w”Iw*=l+wIw*. 

This enables us to use the results presented in Table 1, e.g. for E/G’ = 20; 40; 60, we can 
easily find that the transverse shear has a stronger effect on the deflection of the plate. For 
2hl r, = 0.4, E/G’ = 40, and r/r0 = 0.9 the ratio w Iw * is equal to 6.8795. For comparison (see 
Table l), note that w * is equal to 0.081%‘~~ ID for r = r, [l, 91. 

The comparisons which have been made (see Table 1) show that the effect of transverse 
shear for a plate is governed by the plate thickness and the ratio E/G’, which is equal to zero 
in the classical formulation of the problem (G’ + -), i.e. the classical theory is not affected at 
all by variations of E/G’. 

By applying the correspondence principle [14], one can extend the results to viscoelastic 
plates. The results are transformed from the elastic problem to the viscoelastic one as follows: 

P/D+; ll(r-s)dP(s)+(24,)4 
0 0 

Pl G’+ j rI,(t-s)dP(s), 
0 

g,2(t -SW(S) 

P = P(t) 

(11) 

(12) 

(Bo, II(t), gJt> are quantities determined experimentally [14], B, is the bulk modulus of 
elasticity, II(z) is the creep function, g&) is a function whose values are determined by 
Poisson’s ratio, l-l,(r) is the creep function determined by the transverse shear, t is the time; 
and s is a parameter). 

No refinement of the problem under consideration from the viewpoint of Timoshenko’s 
direct shear model has been obtained to date. 

The case of tangential and normal stresses uniformly distributed across the plate, which 
corresponds to considering the transverse shear separately [6-81, follows directly from 
Timoshenko’s shear model as z + 0 (the median surface of the shell is considered). 
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